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Abstract

A method for reconstructing 3D rational B-spline surfaces
from multiple views is proposed. The method takes advan-
tage of the projective invariance properties of rational B-
splines. Given feature correspondences in multiple views,
the 3D surface is reconstructed via a four step framework.
First, corresponding features in each view are given an ini-
tial surface parameter value (s; t), and a 2D B-spline is
fitted in each view. After this initialization, an iterative min-
imization procedure alternates between updating the 2D B-
spline control points and re-estimating each feature’s (s; t).
Next, a non-linear minimization method is used to upgrade
the 2D B-splines to 2D rational B-splines, and obtain a bet-
ter fit. Finally, a factorization method is used to reconstruct
the 3D B-spline surface given 2D B-splines in each view.
This surface recovery method can be applied in both the
perspective and orthographic case. The orthographic case
allows the use of additional constraints in the recovery. Ex-
periments with real and synthetic imagery demonstrate the
efficacy of the approach for the orthographic case.

1 Introduction

Recovering models from multiple views is an area of great
interest in computer vision. Algorithms for recovering 3D
structure and camera motion have many practical applica-
tions, such as computer aided design, virtual reality, movie
special effects, video coding, etc. Many previous structure
from motion algorithms are general in the sense that they
assume no prior knowledge about the scene. However, in
practice, the scene typically contains structures with strong
geometric regularities that can be used to constrain the esti-
mation problem. Consequently, algorithms have been pro-
posed for the special cases of planes [1, 11, 22, 26, 27, 31],
piecewise planar models [3, 19], polygonal meshes [14],
and quadric surfaces [8, 18].

In this paper we propose a method for reconstructing 3D
rational B-spline surfaces from multiple views. As will be
shown, we can exploit the the projective invariance proper-
ties of rational B-splines to gain a solution to the 3D surface
estimation problem. The approach is demonstrated in a for-
mulation for recovering a quadratic B-spline surface from
point correspondences given in multiple views. The for-
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mulation can be applied in both the perspective and ortho-
graphic case. The orthographic case allows the use of addi-
tional constraints in the recovery. Experiments with real and
synthetic imagery demonstrate the efficacy of the approach
for the orthographic case.

2 Related Work

Structure recovery algorithms can be grouped according to
the complexity of their shape prior. Algorithms using no
shape priors, recover 3D point locations directly. One ex-
ample of this is due to [28], where image measurements are
assembled into a large matrix which can then be factorized
to reveal the underlying geometry. Others have extend this
approach to the perspective case [21, 29]. In contrast with
these batch processing approaches, others have developed
methods that employ a recursive estimation theory (e.g., a
Kalman filter) to estimate 3D point structure and camera
parameters in an on-line fashion [2, 4, 6, 16, 20]. This ap-
proach allows for observation and process noise models to
be directly incorporated into the reconstruction method.

Higher-level constraints of the structure have been in-
corporated into reconstruction methods as well. In particu-
lar, the special case of planar structure has been extensively
researched, and there are methods that incorporate the re-
sulting constraints [26]. In particular [31] has developed
a closed-form solution to planar reconstruction from two
views and [1] had extended the recursive framework of [2],
to incorporate planar information. In [19] Sinclair focuses
on grouping planar regions, while [3] focuses on direct re-
construction. Some methods segment the scene and deter-
mine planes for each patch [11, 22, 27].

More general surface representations in the form of
meshes were explored by [14]. In these approaches the sur-
face is found by minimizing an objective function relating
the estimated surface with projections into estimated cam-
eras. Surfaces have also been modeled as oriented particles
or tiny planes with associated texture in [13, 15, 25]. While
very general, mesh and particle representations tend to over
parameterize smoothly curved surfaces.

In [8] and [18], methods have been proposed that can be
used when objects are well-approximated by quadratic sur-
faces. In [8], the quadratic surface is estimated by relating
the silhouette of the quadratic surfaces to the projected im-
age. In a different approach, [18] examines the induced flow
field of quadratic objects.

In this work we further develop the representation of
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smooth surfaces by using rational B-splines to represent 3D
surfaces and their projections. Spline curve representations
have been used extensively in computer vision in the context
of contour tracking and contour pose recovery (e.g., [7, 5]).
Splines have also been used in motion estimation [24] and
image registration [23]. Our work is related to [23] where
a depth field is computed from spline-based image registra-
tion. In that approach, the spline was used to find disparity
maps from which dense depth maps were then computed. In
this work, we instead focus on directly modeling surfaces in
the scene as 3D rational B-splines.

3 Rational B-Splines

In this section we introduce relevant concepts in B-splines
and define the notation used in this paper. For a detailed
review of B-splines, readers are directed to [10].

A B-spline surface can be defined in terms of a (m+1)�
(n+1) grid of control points, and a set of blending functions
(interpolation functions). Given these, we define a point on
the B-spline surface at a particular parameter value (s; t):

P(s; t) =

mX
i=0

nX
j=0

Bi;d(t)Bj;d(s)pi;j (1)

where pi;j is a control point, andBi;d andBj;d are blending
functions in each parametric direction. The B-spline blend-
ing functions can be obtained via the Cox de Boor recursion
formulas, i.e.:

Bj;1(s) =

�
1; if sj � s < sj+1
0; otherwise

(2)

Bj;d(s) =
s� sj

sj+d�1 � sj
Bj;d�1(s)

+
sj+d � s

sj+d � sj+1
Bj+1;d�1(s): (3)

The polynomial order of the blending functions is defined
by d. The influence of the blending functions is controlled
by a knot vector, [sj ] (sj � sj+1), which defines the region
of influence of each blending function. In our implementa-
tion, we will set d = 3, m = n = 4, and employ a uniform
knot vector: [0; 0; 0; 1; 2; 3; 3; 3].

To make our problem formulation easier, we will need
to deviate from the standard B-spline notation as follows.
Given the set of N = (m+1)� (n+1) control points, we
will rewrite (1):

P(s; t) =

NX
k=1

bkPk; (4)

where Pk = pi;j and bk = Bi;d(t)Bj;d(s), such that i =
1+ bk=(n+ 1)c and j = 1 + k mod (n+ 1).

Using similar notation, rational B-splines take the form:

R(s; t) =

PN

k=1 bkwkPkPN

k=1 bkwk

(5)

The weights, wk are weight factors for the control points.
The greater the value of wk, the closer the surface is
“pulled” towards the control point Pk. One advantage of
the rational B-spline representation is that it can be used to
represent quadrics exactly. Another advantage is that they
are invariant to perspective viewing transformations, as will
be shown in Sec.3.1.

Rational B-splines can be written in terms of a homoge-
neous equation, with homogeneous control points:

~Pk =

�
wkPk

wk

�
(6)

In the homogeneous coordinate system, points on the sur-
face are represented:

~R(s; t) =

NX
k=1

bk ~Pk: (7)

3.1 Projection of Rational B-Splines

An important benefit in using rational B-splines to represent
surfaces becomes apparent when we consider the projection
of a 3D surface point onto the image plane via a 3� 4 pro-
jection matrix P . A point on the rational B-spline ~R(s; t) is
related to the projected image point u(s; t) via:

�
u(s; t)

1

�
' P ~R(s; t) (8)

Here ' is defined to be equality up to scale. From (8) it
follows:

�
u(s; t)

1

�
' P

NX
k=1

bk ~Pk (9)

'

NX
k=1

bkP ~Pk (10)

'

NX
k=1

bk ~P
0

k (11)

From (11) we see that to project a rational spline we sim-
ply project the 3D surface’s (homogeneous) control points
to obtain a set of projected (homogeneous) control points
for the 2D surface (i.e., ~P0

k). The projected surface points
are generated using the same blending coefficients (bk).

This relation suggests a method for reconstructing a B-
spline surface given multiple views. In particular, to recon-
struct the surface we simply need to recover the projected
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control points, ~P0

k, of the 2D rational spline in each view.
Since these control points are in principal no different than
other points we can employ traditional structure from mo-
tion methods (e.g., [21, 28, 30]) to obtain the corresponding
3D B-spline control points ~Pk and the camera parameters if
desired.

4 Surface Recovery

Given feature correspondences in multiple views, the goal
will be to reconstruct the 3D B-spline surface. It is as-
sumed that the image location of M features and their cor-
respondence in each view are given as input to our sys-
tem. For a particular view, the location of the i th feature
will be denoted by ui = [ui; vi]

T . To reduce the com-
plexity of the surface reconstruction, the order of the spline
surface and the knot vector are assumed given. As men-
tioned earlier, in our implementation we will set the order
of the spline to be d = 3, and m = n = 4, and we will
use a uniform knot vector. The number of control points
N = (m + 1)� (n + 1) = 25. We must therefore recover
the N control point locations, as well as the surface point
parameters (si; ti) for each of M feature points.

As will be detailed in the rest of this section, the 3D
surface will be reconstructed via a four step framework.
First, corresponding features in each view are given an ini-
tial surface parameter value (si; ti) , and a 2D B-spline
is fitted in each view. After this initialization, an itera-
tive minimization procedure alternates between updating
the 2D B-spline control points and re-estimating each fea-
ture’s (si; ti). Next, a nonlinear minimization method is
used to upgrade the 2D B-splines to 2D rational B-splines,
and obtain a better fit. Finally, a factorization method is
used to reconstruct the 3D rational B-spline surface given
2D B-splines in each view.

4.1 Initializing (si; ti)

Given a collection of features, an initial surface parameter
(si; ti) must be assigned for each feature. The ith feature
is assigned the same (si; ti) in all views. The estimate of
each feature’s surface parameter will be improved via an it-
erative procedure later. An initial (si; ti) parameter value
is assigned for each feature in the first view. Correspond-
ing features in the remaining views inherit the parameter
assigned in the first view.

The surface point parameters in the first view are found
by placing a rectangular grid of regularly spaced 2D control
points withwk = 1 over the feature points in the first image.
The overall size of the grid is determined by finding the
minimum bounding box for the features. This results in a
set of control points of the form ~P0

k = [~uk; ~vk; 1]
T , where

(~uk; ~vk) is the image location for the k th control point.

The surface point parameters (si; ti) can then be found
by searching over the B-spline parameter space. In our im-
plementation, this is done by sampling uniformly in s � t
space and choosing the sampleR(sl; tl) that corresponds to
the point closest to the feature point, ui:

s�i ; t
�

i = argmin
sl;tl

kui �R(sl; tl)k (12)

Sampling is then performed at a higher resolution around
the chosen estimate, (s�i ; t

�

i ) to find an improved estimate
that is closer to the feature via (12). This is repeated until
the distance between the B-spline sample and the feature is
within a specified threshold.

4.2 Refining Control Points of 2D B-Spline

Given an initial estimate of the features’ parameter values
(si; ti), the control points in each of the views are estimated.
In this step, the control points are recovered independently
for each view, and the third component of the control points
is fixed wk = 1. For a given (si; ti), the point on the B-
spline can be computed:

~R(si; ti)
T = [bi;1; bi;2; : : : ; bi;N ]| {z }

bT
i

2
6664

~P0T
1

~P0T
2
...

~P0T
N

3
7775 ; (13)

where bi is the vector of blending coefficients for (s i; ti).
Ideally we would like the feature point observations to

match their assigned R(si; ti). If this were the case the
observations would be related to the control points via:2

6664
u1 v1
u2 v2
...

...
uM vM

3
7775 =

2
6664
bT1
bT2

...
bTM

3
7775

2
6664

~u1 ~v1
~u2 ~v2
...

...
~uN ~vN

3
7775 : (14)

This can be rewritten in the standard matrix vector form if
we denote:

y =

2
6666666666664

u1
u2
...

uM
v1
v2
...

vM

3
7777777777775

; x =

2
6666666666664

~u1
~u2
...
~uN
~v1
~v2
...
~vN

3
7777777777775

; B =

2
6664
bT1
bT2

...
bTM

3
7775 : (15)

Then (14) becomes
y = B̂x (16)

where:

B̂ =

�
B 0

0 B

�
: (17)
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Since (16) will not be satisfied exactly due to measurement
noise and error in assigning (si; ti), we seek the solution
that minimizes the mean squared error.

x� = argmin
x
ky � B̂xk2 (18)

which can be found using conjugate gradient descent [17].

4.3 Updating (si; ti)

With updated control points we can proceed to improve
each feature’s assigned surface parameter, (s i; ti). Recall
that corresponding points have the same parameters in all
views. In refining our estimate of a feature’s (s i; ti), we
seek to minimize the sum of the distance between the hy-
pothesized point and the observed feature location over all
views:

s�i ; t
�

i = argmin
si;ti

NvX
j=1

ku
(j)
i �R(j)(si; ti)k

2 (19)

where Nv is the number of views, u(j)i is the observed fea-
ture location in the j th view, and R(j)(si; ti) is the spline
predicted point location for that view. This can be solved ef-
ficiently using the previous estimate (si; ti) as starting point
in a minimization algorithm that is based on golden section
search and parabolic interpolation [12].

Given improved estimates of (si; ti) obtained through
the nonlinear minimization, we can then refine the estimates
of the control points in each view as described in Sec. 4.2.
As suggested in [9], these two steps can be applied alter-
nately, first updating the B-spline control points and then
re-estimating each feature’s (si; ti). In our experience, we
have observed that three or four iterations are needed for
reasonable convergence.

4.4 Upgrade to Rational B-Splines

Recall that up until this point, the control point weights have
all been set wk = 1. Estimates of the the 2D spline con-
trol points have been obtained in each view, keeping the
weights fixed as described above. We can now use a nonlin-
ear minimization technique to further fit the spline in partic-
ular view, by allowing the weights to vary. For a particular
view, each control point’s weight is chosen to satisfy:

~P �

k = argmin
~Pk

MX
i=1

kui �R(si; ti)k
2 (20)

In practice, we can keep the point parameters while finding
the weights. The solution is found using the Levenberg-
Marquardt [17] nonlinear minimization procedure. The so-
lution is computed separately for each view.

4.4.1 Special Case: Orthography

When the cameras are orthographic the project matrix takes
the form:

P =

2
4 a b c d

e f g h
0 0 0 1

3
5 (21)

In this case, the wk component of the control points of
the 2D B-splines across all views are constrained to be the
same. This additional constraint can be used when fitting
the 2D rational B-splines. In this case, the objective func-
tion to be minimized should include the control points in
all views simultaneously, since the kth control point in all
views share the same wk.

In addition, if the cameras are orthographic and it
is known that the observed 3D surface can be well-
approximated by a non-rational B-spline, then the “upgrade
to rational B-splines” step can be omitted since the weights
are known to all be wk = 1.

4.5 Reconstruction

Given recovered 2D control points for rational B-splines in
all views, we can employ standard factorization algorithms
[28, 21] to recover the 3D shape and the camera matrices.
The recovered 2D control points are assembled into a mea-
surement matrix. This matrix is then factorized using SVD
to reveal its projective structure. Following this, a homog-
raphy is applied to both the cameras and the structure to
transform the projective reconstruction to an Euclidean one.

4.5.1 Perspective Reconstruction

In the perspective case we assemble the homogenized con-
trol points into a measurement matrix that relates to the 3D
B-spline surface control points and camera matrices as:
2
664

~P
0(1)
1 : : : ~P

0(1)
N

...
. . .

...
~P
0(Nv)
1 : : : ~P

0(Nv)
N

3
775 =

2
64

P(1)

...
P(Nv)

3
75h~P1 : : : ~PN

i

(22)
Typically in perspective reconstructions of this form the ho-
mogenous component of each point is not known and must
also be recovered. However, in our case the wk’s have al-
ready been found and can be incorporated directly. We can
then assemble the recovered control points ~P

0(j)
k into the

measurement matrix on the left-hand side of (22). The cam-
era matrices and 3D control points are then recovered as
described in [21].

4.5.2 Orthographic Reconstruction

Reconstruction in the orthographic case is similar to that of
the perspective case. However, here we are interested in
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the 2� 3 representation of the camera matrices M. To use
this representation we need to substract off the centroid of
the feature points in each view, which effectively sets the
principal point to zero. Thus M is the upper left 2 � 3
submatrix of P .

In this framework the reconstruction is found by relating
the observations to the cameras and 3D control point loca-
tions through:
2
664

P̂
0(1)
1 : : : P̂

0(1)
N

...
. . .

...

P̂
0(Nv)
1 : : : P̂

0(Nv)
N

3
775 =

2
64

M(1)

...
M(Nv)

3
75 [P1 : : :PN ] ;

(23)
where P̂0(j)

k are the recovered [~u
(j)
k ; ~v

(j)
k ] components of

each control point ~P
0(j)
k . The camera matrices and 3D con-

trol points are then recovered as described in [28]. The
weights wk of the control points are already known, as they
were obtained in fitting the 2D rational splines (Sec. 4.4.1).

4.6 Minimum Number of Features and Views

In fitting the 2D rational B-Splines, there are a total of N
control points with three degrees of freedom for each of N v

views. In addition, there are two surface parameters (s i; ti)
for each of M observations. Each feature observation pro-
vides two constraints. Therefore, in general we need:

3�N �Nv + 2�M � 2�M �Nv: (24)

In our implementation, biquadratic surfaces were used;
therefore, in our case N = 25.

For the final reconstructed surface we haveN 3D control
points as well as the (si; ti) for each of M observed points.
Therefore, in the final reconstruction step we need:

4�N + 2�M � 2�M �Nv: (25)

For reconstruction we need the numbers of views and
observed feature points to satisfy both (24) and (25).

5 Experiments

To evaluate our system, reconstructions were performed on
real and synthetic data sequences. These sequences repre-
sent a variety of different shapes that can be represented
using rational biquadratic spline patches.

5.1 Synthetic Sequences

The synthetic experiments were performed by generating
observations of a biquadratic rational B-Spline object with
control points drawn from a parabolic function. A set of
100 surface features were generated, sampled uniformly in
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Figure 1: Synthetic Reconstruction results with seven Views, 100
uniformly sampled feature points and noise with � = :4107

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

σ

er
ro

r

Figure 2: Average reconstruction error for vs: noise level.

(s; t). The orthographic projections of the feature set were
generated from seven projection matrices that corresponded
to different cameras viewpoints. Gaussian noise was then
added to the 2D feature locations.

Examples of the generated 2D views are shown in Fig.
1(a). From these views an estimate of the surface was ex-
tracted using our method. The estimate was then aligned
with the true object by finding the rigid transform and
isotropic scaling that minimized the distance between corre-
sponding 3D points. This was necessary as the reconstruc-
tion is only defined up to a scale factor and a rigid transform.
Example reconstruction results are shown in Fig. 1.

The sensitivity of the reconstruction method was tested
by varying the standard deviation of the added noise. A
graph of results of this experiment is shown in Fig. 2. Here
we show the average reconstruction error for a given level
of noise, where the error is the average distance between
corresponding points of the aligned surface estimate and the
true surface computed from multiple instances of the noise
level. From this plot we see that our approach is reasonably
stable with respect to additive noise.
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Figure 3: Reconstruction of bottle sequence from 101 features in four views.

5.2 Real Sequences

A number of real sequences were taken of smooth textured
objects using a USB camera with resolution of 640 � 480.
In these sequences orthographic cameras were assumed and
only a patch of the object was considered for reconstruction.

Corresponding features were extracted by selecting
points in one frame and tracking them with an iterative pyra-
midal Lucas-Kanade tracker that is available in OpenCV1.
Following this, a few frames with disparate views were se-
lected for use in reconstruction. Features in each selected
input frame are shown in Figs. 3, 4, and 5.

In the first sequence shown in Fig. 3, four views with 101
features of the object were taken. Samples of the fitted 2D
rational-Spline predicted feature locations are shown in Fig.
3(a) along with the observed feature points. Note that the
cylindrical cross-section of the bottle is actually a rounded
triangular shape. From this figure we see that we were able
to accurately fit the 2D rational B-splines. The subsequent
3D surface reconstruction for this patch of the object, along
with the an image of the actual object are shown from a
similar viewpoint are shown in 3(b,c). From these plots we
see the reconstructed surface appears similar to the true ob-
ject, though there are some artifacts around the edges of the
spline. This resulted from trimming the parts of the spline
surface that were outside the convex set of observed points.

Additional example reconstructions are shown in Figs. 4
and 5. In Fig. 4 the surface of a mushroom cap was recon-
structed from four views and 105 features. As seen in Fig.
4(b,c), the resulting 3D surface reconstruction accurately

1http://www.intel.com/research/mrl/research/opencv/

includes a slight dimple in the middle of the mushroom cap
surface. An example of reconstruction for a concave sur-
face is shown in Fig. 5. In this case, seven views and 127
features were used as input to the reconstruction.

6 Discussion and Future Work

As exhibited in the experiments this approach is able to ex-
tract the shape of surfaces modeled as 3D rational spline
patches. While the basic shape of the object was recov-
ered, the visual quality of the reconstructions depends on
how well features were extracted. In particular solutions
exhibit oscillatory in places of the surface when there were
not many or poorly tracked features. This behavior is ex-
pected, and to compensate, penalties on smoothness need to
be incorporated. This can be done by adding smoothness
terms in the reconstruction step [9]. Despite this, results of
this method are promising.

In future work we hope to enhance this system in several
ways. First, we plan to incorporate features estimation into
the framework. Currently, feature estimation is a separate
step. This method however, requires the use of many fea-
tures and finding them is often difficult. We expect better
overall performance if feature tracking is incorporated di-
rectly within surface estimation. By doing this we may bet-
ter cope with occlusions and incorporate other image fea-
tures, such as lines and the silhouette edges of the surface.
We also plan to extend the surface representation to deal
with more complex surfaces, by extending the formulation
from a single spline patch to piecewise spline surfaces. Ad-
ditionally, surface creases may also be considered.
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(a)Sample views with feature observations as crosses and 2D rational-spline predicted locations as circles.
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Figure 4: Reconstruction of mushroom cap surface from 105 features in four views.
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(a)Sample views with feature observations as crosses and 2D rational-spline predicted locations as circles.
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Figure 5: Reconstruction of concabe 3D rational B-spline surface from seven views and 127 features.
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